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Abstract 

The transition probabilities of a model arbitrarily driven harmonic oscillator are 
calculated, in a formalism which suggests the general description of anharmonicity in 
second-quantized way, by means of generalized fields representing complex excitations: 
'dusters' of a finite number of particles, weakly interacting--at lower order--with the 
particles themselves and with other excitations. 

1. Introduction 

A quantum mechanical treatment of  anharmonic lattice vibrations had 
been first developed some time ago by Born & Huang (1954), who considered 
cubic anharmonic terms in detail. Later, Maradudin and Wallis (Maradudin 
& Wallis, 1961; Wallis & Maradudin, 1962), re-examined the problem, 
using more modern techniques for handling irreversible processes in many 
body systems. 

In  both cases the equations of  motion o f  the individual normal co- 
ordinates, which, due to the anharmonic interactions, form a set of  non- 
linear coupled equations, are linearized. The philosophy of  the linearization 
is based on the motivation that if the equations are correct to lowest order 
in the anharmonic coupling constants, then one can expect the solution to 
be correct to the same degree of approximation. 

Linearized equations of  motion are then solved using the ordinary time- 
dependent perturbation theory. In the present note a model of  anharmon- 
icity is proposed through the heuristic description of a driven harmonic 
oscillator, which, being based on the established (Streit, 1965) existence of  
generalized free fields in the Fock space of an irreducible free field, allows 
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removal of the requirement of linearization in most of the physically 
interesting cases (one anharmonic coupling constant). 

The discussion is restricted here to the case of a simple driven harmonic 
oscillator, which, because of its relative simplicity, illustrates the method to 
its best advantage. The more complicated many particle problem and its 
applications (e.g. derivation of the optical absorption coefficient) will be 
treated in a subsequent paper. 

The formalism is expected to allow also the description of nonequilibrium 
many body configurations by classical methods. 

2. The Model 

The Hamiltonian aYf of a driven harmonic oscillator can be written 

= + v ( 2 . : )  

where, in the usual second quantized form, the unperturbed Hamiltonian 
H0 is the well-known one of  the harmonic oscillator, In terms of single 
particle creation and annihilation operators a +, a ([a, a +] = 1)I" 

Ho = a+ a + �89 (2.2) 

The driving term V= V(q, t), to be considered as a perturbation potential 
depending (in addition to the time) on the position coordinate q, is assumed 
to have a coordinate separated formal power-series expansion 

V(q, t) = ~ U,(t)q ~ (2.3) 
n=l 

No loss of generality is introduced by analyticity condition (2.3), which has 
moreover a quite reasonable physical meaning. In replacing q in equation 
(2.3) by its expression in terms of a and a +, 

1 
q = (a + a +) (2.4) 

-VZ 

one must take into account both the general normal ordering technique 
prescriptions (Bogolubov & Shirkov, 1959; Jost, 1965) in finding the 
quantum operator corresponding to a given classical operator, and the 
theorem:~ (Wilcox, 1967) stating that for any pair of operators A, B in the 
ring with a unit commutator [A,B] = 1, for any integer n ~> 0, it is 

(2.5) 

t Units are used such that  h = 1, oJ = I. 
Equations (2.5), (2.53) and (2.66) are in fact applications of  theorems stated and 

proved by Wilcox (1967). 
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In (2.5) the new combinatorial coefficient {n;P} is given in terms of the 

usual one 
p~ (P) =q!(p --q)! 

by 

Obviously (2.5) is nothing but a consequence of Wick's theorem for A = a 
and B -- a +. 

Through (2.4), (2.5) and (2.6), equation (2.3) may be written [one sets 
V.(t) = 2 - ~ " m  u . ( t ) ]  

V= .=,~ V.(') p=o ~ a=o ~ {n;P} (a+)~a'-~ (2.7) 

Equation (2.7) may in turn be rewritten in the following way. Assume the 
set {C~k;(t)} of functions of time to be so defined that for every pair (j,k) of 
positive integers (j may possibly have also the value zero) 

t ~ V,(t){n,2j+ k} (2.8) 

where r ,  = 1 + 8k,o; then it is straightforward to see that (2.7) takes the 
form: 

V= ~ ~ {CS~)(t)(a+)J a'+k + CS.k)(t)(a+)'+* a '} (2.9) 
k = l  j = O  

In equation (2.9) the complex conjugate CSk)(t) of CSk)(t) has been intro- 
duced only for reasons of formal symmetry: indeed, owing to the condition 
implied by definition (2.6), 

{ n : } =  [Pln'P- q/t (2.10) 

result in the C~k)(t) [= C~-k)(t)] being real. 
Now one may verify that in general, provided one defines, for any r, and 

O<~s~r, 
. . .  In, 2r + kt 

A (r)r'xs,kl3) 2. v"(t) t r +k t n=2r+k DtO - 
S,k - -  

A(~){t n=2r+k } 
,.kV) ~ .[n, 2 r + k  

V.(t) l r 

A~';')(t) ~ V,(t) In, 2r + k - 2} 
' n=2r~-~k-2 [ r + k - 1  
A,,k(t) ~. V,,(t) n, 2 +k 

n = 2 r + k  

n(~) = 0 if r = 0 

D(p(t) = 

if r >  1 

(2.11) 
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(r) t {As.k( )} being a set of arbitrary time functions; and 

Cs(t) = X [ ~ D~(rO(t)] (2.12) 
zt([j,0]) Lrt,si~ .J 

where rr([j, 0]) indicates the set of all the possible partitions of the closed 
integer interval [j,0] in sub-intervals: [j,0] -+ [r0,s0] U [r~,sa]... L3 [rms~] 
with ro =-j, s~ = O, s~-=- r~+~, s~ < r ; ( R =  order of the partition), the 
coefficients C~k)(t) may be written as: 

where 

C~f)(t) = H(k)(t) c~k'(t) (2.13) 

where: 
J 

cx(~ ~ _ ~ '  (-)J-~ [1 + [[s/k]]l'/Zexp(iO~) (2.17) 

and, due to the already emphasized condition of reality, the set of 0~ is 
constituted by values 0 and zr only. 

Brandt & Greenberg (1969) have recently defined generalized Bose 
operators b c~), b (k~ + whose commutator is a c-number and whose annihilation 
part annihilates the vacuum state in the Fock space of the usual Bose 
operators, and reduces the number of single particle states by k. They show 
that, provided 

N =  N + = a+ a (2.18) 

is the usual number operator, satisfying 

N I n )  = nln)  

[N, a] = - a ;  IN, a +] = a + 
(2.19) 

J 
~k)( t)  = ~ A~J)tt~'s.k~ ~w~,tt~, (2.14) 

s=0 

The functions H(k)(t)  obviously depend on the set {A~>k(t)} one chooses, but 
their essential feature is that they are dependent only on the index k, and 
not onj. 

If one next explicitly chooses 

A CJ)t'" (_)j-s [1 + [[s/k]]] I/2 
s,k,t) = ~ / s ~ s ~ / ~ . ~ ]  [~(t)[ -1 (2.15) 

where the symbol [[x]] stands for the greatest integer not exceeding x, 
equation (2.9) becomes now 

{~ ( a )  a + %  ( a )  a} (2.16) 
k=l j=O 
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with in) (n = 0, I , . . . )  a complete orthonormal basis for the Fock space of a 
single Bose operator, the above said operators, satisfying: 

(i) [b b ck +] = 1 

(ii) [N, b r = -kb(k); [N, b r = kb (k)+ 

(iii) b(k)+ b~k)[n) = F(n - k; k)ln ) (2.20) 
b c~) b (k)+ In) = F(n; k) ln) 

b ~1) ~ a; b (l)+ = a + (iv) 

can be constructed as: 

= (2.21) 
J=0 

where the coefficients ~ )  are those entering in the expression of the 
'number" eigenvalue: 

F(n; k) = [n !(k + n)!]llz ~k~ (2.22) 
(n - / ) !  

Complete calculations, carried on by Brandt and Greenberg yield for =~k) 
just the expression of the formula in equation (Z 17). 

Use of equations (2.21), (2.17) and (2.16) allows now, heuristically 
speaking, the description of an arbitrarily driven harmonic oscillator, 
instead of in the usual coordinate representation of equations (2.3) directly 
in second-quantized form, assuming for the Hamiltonian ~ the expression 

t~ = (a + a + �89 + ~ H~k)(t) (b ~k) + b ~)+) (2.23) 
k=l 

It is now not a difficult matter to calculate the transition probabilities, 
assuming the last term in (2.23) as a small interaction: 

~ = H o  +Hx 

1tl = ~ H~k)(t)(b~k) + b ~)+) (2.24) 
k=l 

The very form of this Hamiltonian suggests making use of time-dependent 
perturbation theory, by going to the interaction representation (Abrikosov 
et al., 1965). The unitary time-evolution operator: 

U(~ to) ~ exp i f dt (2.25) 
\ to 

which performs the transformation in the present case is simply given by: 

U(~ to) = exp { - i ( N  + �89 (t - to)} 
U~~ to) --- 1 (2.26) 
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and the interaction Hamiltonian in the new representation has the form 

1qi = U (~ HI  U (~ = ~ H(k)(t) exp ( i rN)  (b (k) + b ~k)+) exp ( - i z N )  (2.27) 
k=i 

where r = t - t o .  Straightforward calculations, performed taking into 
account (2.20(ii)) give: 

ffI1 = ~ HCk)(t) [b (k) exp (-ikr)  + b (k)+ exp (ikz)] 
/~=1 

(2.28) 

= ~ H(k)(t) [bek)(t) + b(k)+(t)] 
k=l  

where a generalized time-dependent Bose operator has been defined, 
evolving in time with a frequency k times that of the single boson one, 

br ) = b <k) exp [-ik(t  - to)] (2.29) 

[Observe that equation (2.29) is consistent with the operator equation of 
motion: 

b(k)(t) = i[Ho, b(k)(t)] = -kb(k)( t)  (2.30) 
b(k)(to) =_ b(k) 

Equation (2.28) makes it possible to write the time-evolution unitary 
operator for the interaction representation as: 

0(t, to) = exp _ = exp _ + (2.31) 
I, rO k=l  

where 
t 

h(k)(t) = f H<~)(~) exp [-ik(~ - to)] d~: (2.32) h(k)( t ) 
tO 

The eigenvectors In) (n = 0, 1 . . . .  ) form an orthonormal basis of the Hilbert 
space LZ(R): only if there exists a least common multiple M of the k involved 
in the sum on the right-hand side of(2.31), set r = M/k,  for every choice of a 
set of integers {st} such that 0 < si < r the vectors [m~r + st >, mi e{0, 1 . . . .  } 
span an infinite dimensional subspace H ~s~ of LE(R) such that the relation 

L/(R) = @ H ~S~ (2.33) 
{s} 

holds. 
In such case it is possible to define a unitary transformation U~S~(M) of 

L2(Ii) onto H ~ which restrict/Iz to the subspace H ~s~. In the general case 
the exponential operator in equation (2.31) can be hardly separated into 
product of exponentials, each involving one kind of generalized Bose 
operators. 
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Physically this is due to the interference (connected with the very 
complicated form of the commutators [b(k,),b (k:)] and [b(kl),b (k2)+] for 
k~ # k2) between states of different k,  'k-Bosons clusters', which makes 
possible transitions between states corresponding to different H {s). 

One can observe, however, according to the philosophy pointed out in 
the introduction, that to first order in h(k)(t) (k = 1,2 . . . .  ) O(t, to) can be 
written, no matter what the commutation relations are, 

C](t, to) ~ 1 - i ~ h(k)(t) (b (k) + b (~)+) (2.36) 
k=l 

In this approximation, obviously, the transition probability P~m(t, to) for the 
system in the state [I) at time to to jump into the state lm~ at time t 

Ptm( t, to) = I<ml O(t, t0)ll)l 2 (2.35) 

can be easily computed, Evaluation of the matrix elements in (2.35) may be 
in fact performed in the basis proposed by Brandt and Greenberg [see 
Equations (2.19) and (2.20)], by keeping in mind that, if one expresses the 
integer n as 

n = sk  + h (2.36) 

where 
rr.T1 

(2.37) 

the operators a[a § and b(~)[b (k)§ lower [increase] their respective 
'occupation' numbers 2~ and s of 1 and k respectively (for simplicity of 
notation, but without loss of generality one assumes henceforth that all the 
phases 0, - 0): 

alsk  + A~ = a / ( sk  + h) lsk  + (A - 1)~ 
a+lsk + A) = %/[sk + (h + 1)]lsk + (h + 1)) 

f b(k)[sk + a) = V(s)](s - 1)k + a) k >  1 (2.38) 
;tb(k)+lsk+A> = V ( s +  1)[(s + 1 ) k +  A) 

[In the first two equations in (2.38) it must be of course taken into con- 
sideration that, since a acts by lowering )~ of one unit, if )~ = 0: 

alsk> = V'(sk)[sk - 1) = a/(sk)[(s - 1)k + (k - 1)) (2.39) 

it may be interpreted as lowering s by one unit and simultaneously bringing 
h to its maximum value ?t = k - 1 ; analogously, as a + is defined as increasing 
h by one unit, if h = k - 1 : 

a+lsk + k - 1~ = a / ( sk  + k ) l sk  + k ) = V'[(s + 1)k]l(s+ 1)k> (2.40) 

it may be considered as increasing s by one unit and simultaneously 
bringing h to its minimum value ~ = 0; finally if s = 0: 

b(k) l;~) = o (2.41)] 



384 MARIO RASETTI 

Using (2.36) and (2.38) one obtains 

(ml O(t, to)I/) ~ 3~= - i ~ h(k)(t) (ml(b (~) + b~k)+)]l> 
k=l 

=-ih( I t -m"( t )J ( [[m[~l~)]] )  (2.42, 

for 1 # m, and therefore 

max(l, m) z - , , ,  2 

Equation (2.43) shows that the transition probability P~m(t, to), to second 
order in h(k)(t), depends only on the term in the Hamiltonian/lz for which 
k = II-ml. This has a very elementary physical meaning: the transition 
processes involving the multiple exchange of different numbers of particles 
require a much longer time and, owing to uncertainty relation, their 
probability to occur in a fixed time interval t - to is negligible with respect 
to the simultaneous exchange of [ l -  m[ particles. 

On the basis of the above considerations, one may try a further step to 
obtain a more accurate insight into the value of the transition probability, 
by still assuming that only one term in the Hamiltonian contributes to the 
P~m(t, to) for any pair of fixed (l, m) values: namely that value ko of k for 
which the transition has the maximum probability of being realized through 
a minimum number of steps involving the simultaneous exchange of k0 
particles [this is not explicitly chosen to be k0 = I1- m], owing to the role 
played by the order of magnitude of h(~)(t)]. 

In this hypothesis, one writes now 

O(t, to) ~ exp [-ih(ko)(t) (b (ko) + b(~o)+)] 

- 2 + {rq,,} (2.44) 
,-o r-~ ~ ---, q=O 

Setting then, in analogy with (2.36) and (2.37), 

rko+l~ r =  >~ 1 0 < ~ < k o  

one has finally 

<m] O(t, to)l/) ~ j[ 
j=O p=O q=O 

(2.45) 

�9 (rko + fel(btk~ a bCk~ + A) (2.46) 
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Matrix elements appearing in (2:46) have the value (for ko > 1) 

(ml(b(ko,+).b,ko,v-.[l) = 3a,~((p,q))J[-(r - q ) ! ( s - p + q ) i ]  (2.47) 
r!s! 

where 3((p,q))  is defined to be equal to 1 for any pair of  integers (p,q) 
satisfying the following conditions: 

f 
r - -  s 

(2.48) |O<~q<<.r, s-r<~p<<.r+s i f r < s  
I,p = 2q + s - r 

and equal to zero otherwise. 
Taking conditions (2.48) into account, equation (2.46) can be completely 

worked out in terms of one finite summation, 

[[(r+s)12]] 
(mlU(t, to)[l) ~ 3,~.~v'(r!s!) ~ n~!H "t 

l= [ [ ( I r - s l - l ) /2 : l ]  

�9 {Cr + B~.] ''~} (2.49) 

H = -ihC~~ 

2i if r + s is even 
n~= 2 i + 1  i f r + s i s o d d  

(/t2/2)w / 
"{ exp(Hz/2)-  ~ w' , 

w=O 

[In/2]] 
(iv) B.C"s~=2 -tt"/2~J " ~  {[1 - ( - ) " ] k +  1} 

k=tt~-  1~/2jl ( k -  [[(s - r)/2]])t (k - [[(r - s)/2]]) ! 

2~(2k)! 
"([[n/2]] -- k) l ([[(r + s)/2]] - k) t 

and it is therefore calculated exactly for any value of IH[. 
Equation (2.49) can be extrapolated to the particular case in which 

ko = 1, and it reduces then to the known formula for the linearly driven 
harmonic oscillator (Feynman, 1951): 

where now r = min (l, m), s = max (l, m). 

where: 

(i) 

(ii) 
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Equation (2.50) could at once be obtained by means of the formula 
(Wilcox, 1967): 

a~(a+) J+k =j!(a+) k N[L,~(-a + a)] (2.51) 

(N stands for normal ordering operator), remembering (2.20(iv)). L~(x)  is 
the Laguerre polynomial of degree m and order n in x. The final step in the 
construction of the model is based on the observation that both in (2.49) 
and in (2.50) the amplitude for the transition from [l} to [m} contains a 
factor 3a. ~ [in (2.50) of course, it may be only ~ =/~ = 0]. The most obvious 
hypothesis is now that particularly those k which are common divisors of 
l ,m and [ l -  ml do contribute to the amplitude, and among them essentially 
k l = It - m l and those ks = (1l - m l)/s (s integer) which realize the minimum 
number of Steps s > 1. 

From the physical standpoint the most important case is, of course, 
s = 2, and the discussion is here restricted to this particular choice. Generali- 
zation to higher order, i.e. s > 2 and/or more than one s value playing 
simultaneously a not-negligible role in U(t, to), is easily obtained by means 
of the formalism proposed by Lutzky (1968): it will be discussed elsewhere 
in more specified connection with anharmonicities in crystals, and their 
role in the description of the dispersion relations. 

The amplitude (mIO( t ,  to)[l), in the above mentioned approximation 
that only two terms of the Hamiltonian contribute to it may be written as 
the matrix element of 

•(t, to) ~ exp {-i [h(kO(t) (b (go) + b (kO+) + h(2g0)(t) (b (2k~ + b(2ko)+)]} (2.52) 

which may again be calculated in the general assumption that it could 
possibly be 2k0 # [l - m]. 

Equation (2.52) is highly nonlinear, due to the fact that b cko), b (ko)+ do not 
commute with b Czko), b (zk0)+. One could factorize it by expansion of the 
exponent in the classical infinite series of homogeneous terms--usually 
known as Hausdorff formula--discussed and used by several authorst 
(Hausdorff, 1906; Magnus, 1954; Wei, 1963; Weiss & Maradudin, 1962). 
The perturbative character of the interaction, leads, however, to the 
following simpler discussion. 

First of all, let us observe that by means of the method of linear super- 
position (Wilcox, 1967) one can write, on the basis of equations (2.21) 
and (2.18), 

{ b(k) (2.53) A(N) a s 

b(k~+ = (a+)~ f~(N)  

fk(N) being a function of the number operator N, corresponding to the 
e-number functionfk(z) defined to assume, for integer values of z--say g--  
the value, 

!(1 + 
/ j (2.54) 

t In the work by Weiss & Maradudin (1962), the application of the method is discussed 
specifically in conn~tion with a crystal physics problem, 
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Equation (2.53), and the commutation relation characteristic of b (k). 
([b(k),b Ck)+] = 1), suggest to look for a function of the operator N(k)= 
b~k)+b {k), let us call it g(N(k)), such that 

{b (2k) = g(N <k)) (b(k)) 2 
b(2/o+ = (bCk)+)2g(N(k)) (2.55) 

Such a function does indeed exist, and it may be calculated to correspond 
to the c-number function g(z) defined to assume, for integer values of z--say 
r~--, the value 

1 [ 2/~_ -~ 3 +_ (--)~ t1'2 
g(ra) = 2 [(r~ + 2) (r~ + 1)J (2.56) 

This amounts to swing that, in analogy with the previous procedure 
(Brandt & Greenberg, 1969), one could set 

b (2k) = ~ ~j(b(~)+) ~(b(k)) a+2 (2.57) 
j=0 

where 

~, = ~ ~ [. ~_~.t0~2_~.t _ j '  ( - ) ' - '  [21+ 3 + (-) ' / ' /2 = ~a, (2.58) 
I=0 

Of course the first coefficient 0~0 in (2.57) is the most important, because it 
expresses the relation between the state of one b (z~) operator and the state 
of two b (k) operators, while remaining terms are necessary only to give the 
right c-number commutator [b{2k),b (ak)+] = 1. The identification b (2k)~ 
~0(b{k)) 2 becomes worse as one considers states of many b operators, so in 
the present situation it is better represented by 

b {ak) ~ CN~(b(k)) 2 (2.59) 

where the coefficient CNCk) will be assumed at the end of computations, 
depending on the occupation number nr of the state on which the operator 
acts as 

This both reproduces the form of the states and the occupation number 
eigenvalue equation, even if it does not exactly conserve the commutation 
relations but only their expectation values. If  one now sets: 

(i) ~ =/3 = --ih(Zko)(t) CN,ko, 

(ii) ~ = 8 =--ih(ko)(t) (2.61) 

(iii) y = 0 

Equation (2.52) can be rewritten: 

U(t, to) ~ exp [~(b(ko)) 2 + fl(b(ko)+) z + yb (ko)+ b (ko) + 8b ~ko) + ~b ~ko)+] (2.62) 
25 
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which, provided one defines 

(i) 

(ii) 

(iii) 

(iv) 
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i 
A = B = �89 = - ~ th[2h(2ko)(t) Credo,] 

1 1 
G =  1 -  1 

cos (2~) ch[2h(Zk~ CN(,0,] 

D =  E = -~(G + A) (2.63) 
(X 

1 e 2 1 62 1 E 2 
F = -  �89 - ~ + ~-~C + ~ v A  

may be put in normal form: 

O(t, to) = N{exp [A(b(ko)) 2 + B (b(ko~+) z + Gbtko)+b (~o) + Db (ko) + Eb (ko)+ + F]} 
(2.64) 

where N is the 'normal ordering' operator already introduced in (2.51). In 
derivingt (2.64) use has been made of  (2.61(iii)). 

The knowledge of the time-evolution operator in its normal form, makes 
it possible to express its matrix elements between states I l )  and [m) as a sum 
of a finite number of terms. Indeed, if one writes 

0(t,  to) = N{0(t, to)} = ~ ~ Vp,~(b(~~ %)~ (2.65) 
p=0 q=0 

it is obviously, using the same notations defined by (2.45), M=~(r,s) 
(m I O(t, to) l/) = 3a,~/(s!  r!) Us (2.66) 

J=l,-,l ( M - j ) !  

where 

Us = t/Uj,j_ls_,l i fs  > r (2.67) 
tUj_ls_ri,j i fs  < r 

So the determination of  (m[ •(t, to)[1) is now reduced to the much simpler 
problem of finding the [min (r, s) + 1 ] coefficients Up,~ [0 < p, q -<< M ] of  the 
expansion (2.65) appearing in (2.66). 

3. Conclusion 

It is straightforward to generalize the sketched procedure, by the ansatz 
that, in cases when more than one anharmonie coupling constant htk)(t) is 

t Wilcox (1967). 
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not negligible, the exponential (2.31) should be handled with the approxi- 
mate commutation relations [b ~k~), b ok2)] ~ O, and 

(1 i fkl  = k2 
[b (k'), b (k2)+] ~ ~0 i f k l  # Sk2 

(fl if kl Sk2 
where S is any integer; and the operator fl in turn is to be calculated, after 
an easy generalization of (2.55), as C[(b~k~)) s, b~k2)+], where C is a constant 
to be determined in analogy with (2.60). 

The case in which more than two coupling constants are to be taken into 
account is more cumbersome, owing to the increasing complication of  the 
formulas similar to (2.63) which allow normal ordering of the time-evolution 
operator, but not more difficult in principle. 

From the physical standpoint it is apparent that the given treatment may 
be used to describe, in a directly second-quantized form, anharmonicities 
as generalized fields describing complex excitations: 'clusters' of  a finite 
number of  particles weakly interacting at lower order with other excitations 
and with the single particles themselves. 

As a final remark, one may observe that many of the restrictions 
introduced through this note could be removed without affecting the general 
results, but with a sensible increasing of  the complexity of formulas and 
notations. 
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